You are not allowed to use any resources except writing implements to complete this exam. Show your work in the space provided. You have 75 minute.

1. (a) Let $R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1), (3,3)\}$ be a relation on $\{1, 2, 3\}$. Determine whether R is reflexive, symmetric, antisymmetric, or transitive.

 Ans: It’s not antisymmetric since $(1, 2)$ and $(2,1)$ are in R, for example. It’s not transitive since $(2,1)$ and $(1,3)$ are in R, but $(2,3)$ isn’t. By inspection, R is reflexive on $\{1, 2, 3\}$ and symmetric.

(b) Let $A = \{1, 2, 5, 10\}$. Define R on A by xRy if and only if y is a divisor of x. List all the members of R, and determine whether R is reflexive, symmetric, antisymmetric, or transitive.

 Ans: $R = \{(1,1), (2,1), (5,1), (10,1), (2,2), (10,2), (5,5), (10,5), (10,10)\}$. R is not symmetric since $(2,1)$ is in R, but $(1,2)$ isn’t, for example. By inspection, R is reflexive on A, antisymmetric, and transitive (a poset).
2. Prove that 1_A is an equivalence relation on A.

 Ans: $1_A = \{(a,a): a \text{ in } A\}$ is reflexive on A by definition; i.e., if x is in A, then (x,x) is in 1_A. If (x,y) is in 1_A, then $y = 1_A(x) = x$, and $(x,y) = (x,x) = (y, x)$; hence, if (x,y) is in A, then (y,x) is in A; i.e., 1_A is symmetric. Similarly, if (x,y) and (y,z) are in 1_A, then $x = y = z$, and (x,z) is in 1_A; i.e., 1_A is transitive.

3. Prove that 1_A is a partial ordering on A.

 Ans: We showed in 2, above that 1_A is reflexive and transitive. It remains to show that it’s antisymmetric. Suppose (x,y) and (y,z) are in 1_A. Then $y = 1_A(x) = x$. Hence, 1_A is antisymmetric.
4. Let $A = \{1, 2, 3, 6\}$, and define R on A by xRy if and only if $y-x$ is in \mathbb{N}.

(a) Is R an equivalence relation on A? Justify your answer. If R is an equivalence relation, find A/R.

Ans: R is not symmetric since $(1,2)$ is in R, but $(2,1)$ isn’t, for example. Thus, R isn’t an equivalence relation.

(b) Is R a partial ordering on A? Justify your answer. If R is a partial ordering, draw the Hasse diagram.

Ans: $R = \{(1,1), (1,2), (1,3), (1,6), (2,2), (2,3), (2,6), (3,3), (3,6), (6,6)\}$ is reflexive on A, antisymmetric, and transitive, by inspection; hence, R is a partial ordering on A.

```
    6
   / \  \
  3   2   1
```
5. Let $A = \{1, 2, 3, 6\}$, and define R on A by xRy if and only if $|y-x| = 3n$ for some n in \mathbb{N}.

(a) Is R an equivalence relation on A? Justify your answer. If R is an equivalence relation, find A/R.

\textbf{Ans:} $R = \{(1,1), (2,2), (3,3), (3,6), (6,3), (6,6)\}$ is reflexive on A, symmetric, and transitive, by inspection; hence, R is an equivalence relation on A. $A/R = \{\{1\}, \{2\}, \{3,6\}\}$.

(b) Is R a partial ordering on A? Justify your answer. If R is a partial ordering, draw the Hasse diagram.

\textbf{Ans:} Since $(3,6)$ and $(6,3)$ are in R, R isn’t antisymmetric; hence, R isn’t a partial ordering.