QUIZ 3.3

Brian Hagler
MATH 3305 MATHEMATICAL REASONING

Introduction to Advanced Mathematics, Second Edition
Barnier and Feldman © 2000 by Prentice-Hall, Inc.

1. Give the commutative, associative, and idempotent laws for intersection.

They are \(A \cap B = B \cap A \), \((A \cap B) \cap C = A \cap (B \cap C) \), and \(A \cap A = A \), resp.

2. Fill in the blank: It is possible to prove statements about sets by using the Boolean laws for sets directly, without invoking a pick-a-point proof. Such proofs are called algebraic proofs.

3. (Example 7) Prove that \((A - D) \cup (B - D) = (A \cup B) - D \).

(See text, p. 99, for solution.)

4. (Practice Problem 7) Supply a reason for each of the steps in Example 7.

(See text, p.114, for solution.)

5. (EXERCISE SET 3.3, Exercise 12(a).) Prove that \((A \cap B) \cup (A - B) = A \) with a pick-a-point method.

Proof

\(\subseteq \) Let \(x \in (A \cap B) \cup (A - B) \). Then \(x \in A \cap B \), or \(x \in A - B \). Since both \(A \cap B \) and \(A - B \) are subsets of \(A \) by S12b, \(x \in A \).

\(\supseteq \) Let \(x \in A \). If \(x \in B \) also, then \(x \in A \cap B \subseteq (A \cap B) \cup (A - B) \). On the other hand, if \(x \notin B \), then, since \(x \in A \), \(x \in A - B \subseteq (A \cap B) \cup (A - B) \). In either case, \(x \in (A \cap B) \cup (A - B) \).