Worksheet 11: Series

Problems

16. Write out the partial sum S_4 for each series. Do not simplify.
 (a) $\sum_{n=0}^{\infty} (-1/2)^n$
 (b) $\sum_{k=0}^{\infty} 2^k$
 (c) $\sum_{i=1}^{\infty} (3 - 5i)$
 (d) $\sum_{j=1}^{\infty} (2j)!/j^2$
 (e) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$

17. Identify the value of p and determine whether the series converges for each of the p-series, if any, in problem 16. Similarly, determine the ratio r and convergence/divergence of any geometric series.

18. A series starts $1 + \frac{1}{2} + \cdots$; that is, the first two terms are 1 and $\frac{1}{2}$. Find a formula for the n-th term a_n if the series is
 (a) an arithmetic series $\sum_{n=0}^{\infty} (kn + a_0)$ (i.e., find k and a_0; $a_n = kn + a_0$).
 (b) a geometric series $\sum_{n=0}^{\infty} r^n$ (i.e., find r; $a_n = r^n$).
 (c) a p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (i.e., find p; $a_n = \frac{1}{n^p}$).

19. Find a formula for the N-th partial sum of $\sum_{n=0}^{\infty} (3/2)^n$. Does the series converge or diverges? Explain.

20. Determine whether the series converges or diverges. Evaluate, if the series converges.
 (a) $\sum_{n=0}^{\infty} \frac{3^n}{5^n}$
 (b) $\sum_{n=0}^{\infty} (-3/5)^n$
 (c) $\sum_{n=1}^{\infty} \frac{3^n}{5^n}$
 (d) $\sum_{n=0}^{\infty} (1/7)^{-n}$

21. Determine whether the series converges or diverges. e is the Euler number. $e \approx 2.7$.
 (a) $\sum_{n=1}^{\infty} \frac{1}{n^n}$
 (b) $\sum_{n=1}^{\infty} n^e$
 (c) $\sum_{n=1}^{\infty} n^{1/e}$
 (d) $\sum_{n=1}^{\infty} n^{-1/e}$

22. Determine whether the series converges or diverges. Evaluate, if the series converges.
 (a) $\sum_{n=1}^{\infty} \left(\frac{2}{n^n} - \frac{2}{(n+1)^n} \right)$
 (b) $\sum_{n=1}^{\infty} \frac{3^n}{5^n}$
 (c) $\sum_{n=3}^{\infty} (-1)^{n+1} \frac{1}{n}$
 (d) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+1}$

23. Find a geometric series that converges to $3/4$. Is there a geometric series that converges to $1/3$? If there is, give it. If there isn’t, determine all the real numbers that are given by a geometric series.

24. Find a formula for the N-th partial sum of the telescoping series $\sum_{n=0}^{\infty} [n!2^n - (n+1)!2^{n+1}]$, and use the formula and a calculator to find the partial sums S_0, S_1, S_2, S_3. What appears to be the value of the series?

25. Find a formula for the coefficients a_n in the power series representation $\sum_{n=0}^{\infty} a_n x^n$ for e^{-x}. (Recall that $e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$.

Answers to Selected Problems

17.(e) is a p-series with $p = 1/2$, hence it diverges. Geometric series are (a) $r = -1/2$, convergent, and (b) $r = 2$, divergent.

18. (a) $\sum_{n=0}^{\infty} ((-3/4)n + 1)$
 (b) $\sum_{n=0}^{\infty} (1/4)^n$
 (c) $\sum_{n=1}^{\infty} \frac{1}{n}$

19. $S_1 = (1 - (3/2)^{n+1})/(1 - 3/2)$ diverges since $(3/2)^{n+1} \to \infty$.

20. (a) Converges to $-15/4$. (b) Converges to $5/8$. (c) Converges to $-15/4 - 3 = -3/4$ (d) Diverges.

21. (a) is the only convergent one of the four.

22. (a) Converges to 2. (b) Diverges. (c) Converges to $\ln 2 - 1/2$ (d) Converges to $\ln 2 - 1$

23. The geometric series with ratio $r = -1/3$ converges to $3/4$. The possible sums of the geometric series are the numbers in the interval $(1/2, \infty)$.

24. $S_N = 1 - (N+1)!2^{N+1}$, $S_0 = -1$, $S_1 = -7$, $S_2 = -47$, $S_3 = -383$, and $S_N \to -\infty$.

25. $e^{-x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n$