Applications of the Integral
1. Find the length of the curve \(y = \sqrt{x^3} \) from \(x = 0 \) to \(x = 3 \).
2. Find the length of the parametric curve \(x = \cos(e^{2t}), \ y = \sin(e^{2t}) \) for \(0 \leq t \leq 1 \).
3. Write an integral for the area between the curves \(y = \sinh x \) and \(y = 1 - x^2 \) for \(-3 \leq x \leq 12 \). You need not evaluate the integral.
4. Find the area between the curves \(y = x^2 + 1 \) and \(y = 3 - x \) from \(x = -4 \) to \(x = 4 \).
5. Use an integral to show that the surface area of a sphere of radius \(r \) is \(4\pi r^2 \).
6. Consider the bounded region \(\mathcal{R} \) in the plane bordered by the curves \(y = e^x, \ y = 1, \) and \(x = 1 \). Find the volume of the solid whose base is \(\mathcal{R} \) and whose cross-sections perpendicular to the \(x \)-axis are squares.
7. Write and evaluate an integral for the volume of the solid generated by revolving \(\mathcal{R} \) in problem 6
 (a) about the \(x \)-axis.
 (b) about the \(y \)-axis.

Sequences
8. For the sequence \((5n - 1)_{n=-3}^{\infty} \), list the first 5 terms and find the (-1)-th, 0-th, 3-th, and 52-th term.
9. Give a formula for the \(n \)-th term of a sequence whose first 5 terms are 2,3,5, 7 and 11.
 Give the next 3 terms. According to your formula, find the 100-th term.
10. Find the 7-th term \(g_7 \) in the golden ratio sequence and the 10-th term \(f_{10} \) in the Fibonacci sequence.
11. For a non-negative integer \(n \) and real number \(x \), Pochhammer’s Symbol \((x)_n \) is defined recursively by
 \[
 (x)_0 = 1, \quad \text{and} \quad (x)_n = (x + n - 1) \times (x)_{n-1}, \quad \text{for} \quad n = 1, 2, 3, \ldots .
 \]
 Consider the sequence with \(n \)-th term \(a_n = (-4)_n \), for \(n = 1, 2, 3, \ldots \). List the first 7 terms of the sequence, and find \(a_{271} \).
12. Find the limit, if the sequence converges. Cite the basic sequence limit rule, or rules, from Part A.3 of Worksheet 10 you used.
 (a) \(\left(\frac{4 - 2n^{1/n}}{3 + (1/2)^n} \right)_{n=1}^{\infty} \)
 (b) \(\left(6 - \frac{e^n}{f_n} \right) \), where \(f_n \) is the \(n \)-th term of the Fibonacci sequence.
SPECIAL HOMEWORK 2

(c) \(\left(\frac{-2g^n}{(\pi + 1)^n} \right) \), where \(g \) is the golden ratio.

(d) \(3g_n - \frac{2}{g_{n+2}} \), where \((g_n) \) is the golden ratio sequence.

(e) \(\left(1 + \frac{3}{n} \right)^{-4n} \)

13. The \(n \)-th term of a sequence that involves a rational function is given. Find the limit, if the sequence converges.

(a) \(\frac{2n^3 - n^2}{3n - n^3} \)

(b) \(\frac{6 - n^2}{n^3 - 10} \)

(c) \(\frac{4n^3 - 2n + 1}{5n^2 + 7n - 3} \)

(d) \(\sqrt{\frac{4n^2 + 1}{64n^2 + 3n + 1}} \)

(e) \(\ln(n^4 - 1) - 4 \ln(2n + 1) \)

14. Find a formula for the \(n \)-th moment \(\mu_n \) corresponding to the weight function \(w(x) = x^2 \) on the interval \([-1, 1]\).

15. Find a formula for the Fourier coefficients \(a_n \) and \(b_n \) for the function \(f(x) = 5x^2 \).

Series

16. Write out the partial sum \(S_5 \) for each series. Do not simplify.

(a) \(\sum_{n=0}^{\infty} (-1/4)^n \) (b) \(\sum_{k=1}^{\infty} k^{-3} \) (c) \(\sum_{i=2}^{\infty} (2 - 3i) \) (d) \(\sum_{j=0}^{\infty} \frac{2^j}{j!} \) (e) \(\sum_{m=1}^{\infty} ((1/2)^m - (1/2)^{m-1}) \)

17. A series starts \(1 + \sqrt{2} + \cdots \); that is, the first two terms are 1 and \(\sqrt{2} \). Find a formula for the \(n \)-th term \(a_n \), if the series is

(a) an arithmetic series \(\sum_{n=0}^{\infty} (dn + a_0) \) (i.e., find \(d \) and \(a_0 \); report \(a_n = dn + a_0 \)).

(b) a geometric series \(\sum_{n=0}^{\infty} r^n \) (i.e., find \(r \); report \(a_n = r^n \)).

(c) a \(p \)-series \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) (i.e., find \(p \); report \(a_n = \frac{1}{n^p} \)).

18. Find a formula for the \(N \)-th partial sum \(S_N \) of the series \(\sum_{k=0}^{\infty} (2k^2 - 3k + 1) \), and show that the series diverges.

19. (a) Find a formula for the \(N \)-th partial sum of \(\sum_{n=0}^{\infty} (1/3)^n \), show that the series converges, and find its value. (b) Is there a geometric series that converges to \(3/5 \)? If there is, give the series. If there isn’t, determine all the real numbers that are not given by a geometric series.

20. Show that the telescoping series \(\sum_{m=1}^{\infty} ((1/2)^m - (1/2)^{m-1}) \) converges and find its value.
Selected Answers

1. \(\frac{8}{27} (\sqrt{(31/4)^3} - 1) \)
2. \(e^2 - 1 \)
4. \(107/3 \)
6. \(\frac{e^2}{2} - 2e + \frac{5}{2} \)
7. (a) \(\frac{\pi}{2} (e^2 - 3) \) (b) \(\pi \)

8. \((5n - 1)_{n=-3}^{\infty} = (-16, -11, -6, -1, 4, \ldots) \)
9. The cheating bastard way is \(a_1 = 2, a_2 = 3, a_3 = 5, a_4 = 7, a_5 = 11, \) and \(a_n = 0 \) for \(n = 6, 7, 8, \ldots \). Then \(a_{100} = 0. \)

10. \(f_{10} = 89, g_7 = 34/21 \)
11. \(((-4)_n)_{n=-3}^{\infty} = (-4, 12, -24, 24, 0, 0, 0, \ldots) \)
12. (a) \(2/3 \) by rules (d) and (e) (b) diverges to \(-\infty \) (c) 0 by rule (e) with \(r = 2g/(\pi + 1) \) (d) \(3g - (2/g) \) by rule (b) (e) \(e^{-12} \) using rule (a) and a substitution.

13. (a) -2 (b) 0 (c) diverges to \(\infty \) (d) \(1/4 \) (e) \(\ln(1/16) \)
14. 0 if \(n \) is odd, and \(\frac{2}{n+3} \) if \(n \) is even.
15. \(b_n = 0 \) for all \(n, a_0 = \frac{10}{3} \pi^2, \) and \(a_n = (-1)^n \frac{20}{n^2} \) for \(n = 1, 2, 3, \ldots \).