FINAL EXAM

Follow all instructions and show your work in the space provided. There are 10 problems that will be scored from a total of 200 points. You are not allowed to use any resource except writing implements. You have 2 hours to complete the exam.

Do not write in the table below.

<table>
<thead>
<tr>
<th>1</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>
1. Give a formula \(f(x) \) for a function with the following features:
 \(f(x) \) is a rational function
 \(f(x) \) is an odd function
 \(f(x) \) has vertical asymptotes at \(x = \pm 5 \)
 \(f(x) \) has no horizontal asymptotes
 \(f(x) \) has value \(-3\) at \(x = 1 \)

 A possible solution:
 \[
 f(x) = \frac{25}{x + 5} - \frac{7}{x - 5} \]

2. \(f(x) = \begin{cases}
0, & \text{if } x \leq 2 \\
mx + b, & \text{if } 2 \leq x \leq 3 \\
2, & \text{if } 3 \leq x
\end{cases} \)

 Find \(m \) and \(b \) so that \(f(x) \) is continuous for all \(x \).

3. \(f(x) = \begin{cases}
x^3, & \text{if } x \leq 1 \\
x^2 + b, & \text{if } 1 < x < 3 \\
x, & \text{if } 3 \leq x
\end{cases} \)

 Find \(m \) and \(b \) so that \(f(x) \) is differentiable for all \(x \).

4. Calculate \(y' \).
 (a) \(y = 2 - x^2 + \sec x + 7 \ln x \)
 (b) \(y = e^{-\cos 2x} \)
 (c) \(y = x/\sin x \)
 (d) \(y = xe^x \tan x \)

5. Find two positive numbers, \(x \) and \(y \), such that their product is 1, and \(5x + y \) is a minimum.
6. Evaluate the indefinite integrals.

(a) \[\int 2 \sin t \cos t \, dt \]

(b) \[\int (7x^{-1/2} + 3x^{-1}) \, dx \]

(c) \[\int e^{\ln r} \, dr \]

(d) \[\int \frac{(w^3 - 1) \, dw}{w^2} \]

(e) \[\int \frac{3u^2 + 8u - 16}{u + 4} \, du \]

7. \(f(x) \) is an even function with domain all \(x \)'s, \(\int_{-6}^{6} f(x) \, dx = -5 \) and \(\int_{-5}^{5} f(x) \, dx = 11 \). Evaluate the following.

(a) \[\int_{-6}^{6} f(x) \, dx \]

(b) \[\int_{-6}^{6} (4f(x) - 3x) \, dx \]

(c) \[\int_{0}^{5} f(x) \, dx \]

(d) \[\int_{-5}^{5} f(x) \, dx \]

(e) \[\int_{-5}^{5} f(x) \, dx \]

8. Find \(\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{3k}{n} \right)^2 \left(\frac{3}{n} \right) \) by writing it as an integral, then evaluating using the FTC.
9. Solve the following.

(a) \(\sum_{i=1}^{15} a_i = 150 \). Evaluate \(\sum_{i=1}^{15} (3a_i - 1) \).

(b) Evaluate \(\sum_{j=1}^{3} \cos(\pi / j) \).

(c) Evaluate \(\sum_{n=1}^{100} n \).

(d) Write \(\int_{0}^{3} x^2 \, dx \) as a limit of a Riemann sum, using regular partitions and right endpoints.

(e) Write \(\frac{2}{3} - \frac{3}{4} + \frac{1}{2} - \frac{5}{6} + \frac{6}{7} \) in sigma notation.

10. Evaluate and simplify the definite integrals.

(a) \(\int_{-\pi/6}^{\pi/2} \cos t \, dt \)

(b) \(\int_{-5\pi}^{5\pi} x^2 \sin x \, dx \)

(c) \(\int_{0}^{\ln 3} e^w \, dw \)

(d) \(\int_{0}^{\tan(\frac{x}{3})} dx \)

(e) \(\int_{-4}^{4} \sqrt{16 - x^2} \, dx \)