HOMEWORK #6
Graphing and Optimization

Complete your work on separate pages.

1. Use the First Derivative Test and appropriate limits to classify the critical values of each function as non-extrema or local/global max/min.
 (a) \(g(x) = \frac{x^2}{\sqrt{x^2 - 1}} \)
 (b) \(y = 3x^5 - 20x^3 + 32 \)

2. If possible, use the Second Derivative Test and appropriate limits to classify the critical values of each function as non-extrema or local/global max/min.
 (a) \(y = 3x^5 - 20x^3 + 32 \)
 (b) \(f(x) = -e^{x^2 + 4x - 12} \)
 (c) \(s = t^4 \)

3. Use Fermat’s Theorem to find the global minimum and global maximum for each.
 (a) \(y = 3x^5 - 20x^3 + 32 \) on \([-1,3]\)
 (b) \(f(x) = -e^{x^2 + 4x - 12} \) on \([-1,3]\)

4. Make a careful sketch of the graph of
 (a) \(y = x^3 - x + 60 \)
 (b) \(y = \frac{3x^2}{x^2 - 4} \)