Notes About Exponential Functions:

<table>
<thead>
<tr>
<th>item</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>general form</td>
<td>(y = y_0 b^x) ((y_0 \neq 0, ; 0 < b < 1 ; \text{or} ; 1 < b))</td>
</tr>
<tr>
<td>initial value</td>
<td>(y_0 = y(0), \text{the value of } y \text{ when } x = 0)</td>
</tr>
<tr>
<td>growth factor</td>
<td>(b), the base of the exponential</td>
</tr>
<tr>
<td>domain</td>
<td>all real (x)</td>
</tr>
<tr>
<td>range</td>
<td>if (y_0 > 0), then range is (y > 0)</td>
</tr>
<tr>
<td>asymptotes</td>
<td>(y = 0) ((x \text{-axis}))</td>
</tr>
<tr>
<td>graph</td>
<td>for (0 < y_0) and (1 < b) . . .</td>
</tr>
</tbody>
</table>

defining qualities

(1) Geometrically . . .

for \(0 < y_0 \) and \(1 < b \) . . .

area under the curve from \(-\infty\) to \(x \) is proportional to \(y(x) \)

(2) Mathematically . . .

for \(y_0 = 1 \), so that \(y(x) = b^x \) . . .

\(y(x_1 + x_2) = y(x_1) \cdot y(x_2) \)

Important Example:
The natural exponential function \(y = e^x \) (best studied with series)
Euler Number \(e \) \((e \text{ is irrational}; \; e \approx 2.71828182) \)
model applications: exponential growth and decay, continuously compounded interest
Exercises.

1. Rewrite each of the following in the form $y_a b^x$, for constants y_a and b.

(a) $\frac{7^x}{5}$
(b) $\frac{-3}{4^x}$
(c) 4^{-5x}

(d) 3^{-x}
(e) $\frac{2^x}{3^x}$
(f) -6^{2x}

(g) 2^{x+1}
(h) 7^{3x-2}
(i) -4^{2-x}

2. Which of the following are exponential functions?

(a) $y = 5 \cdot 7^x$
(b) $f(x) = -2^{-3x}$
(c) $g(x) = 3\sqrt{x}$
(d) $y(x) = -(2x)^3$

(e) $e(x) = -5^{3x-1}$
(f) $f(x) = 5^{7x^2-100}$
(g) $y = 4^x + x^2$
(h) $y = 4^x \cdot x^2$

(i) $y = x^4$
(j) $f(x) = 7x^2 - 100$
(k) $y = 2^x / 3^x$
(l) $y = 4^x / x^2$

3. Determine the initial value, growth factor, and range for each of the exponential functions in exercise 2.

<table>
<thead>
<tr>
<th>exponential function</th>
<th>initial value</th>
<th>growth factor</th>
<th>range</th>
</tr>
</thead>
</table>

4. Make a sketch of the graph for each exponential function in exercise 3.