PREPARATORY TOPICS

Part 1: Formulas and Principles of Geometry, and Dimensional Analysis

Follow all instructions and show your answer in the space provided.

1. Formulas and Principles of Geometry.
 (a) Length p of the perimeter of a rectangle with base b and height h.
 (b) Length d of the diagonal of a rectangle with base b and height h.
 (c) Length c of the circumference of a circle with radius r.
 (d) Area A of a circle with radius r.
 (e) Area A of a rectangle with base b and height h.
 (f) Area A of a region with uniform cross-sectional length l and height h.
 (g) Area A of a parallelogram with base b and height h.
 (h) Area A of a triangle with base b and height h.
 (i) Surface area S of a rectangular solid with length l, width w and height h.
 (j) Surface area S of a right circular cylinder with radius r and height h.
 (k) Surface area S of a sphere with radius r.
 (l) Volume V of a sphere with radius r.
 (m) Volume V of a rectangular solid with length l, width w and height h.
 (n) Volume V of a solid with uniform cross-sectional area A and height h.
 (o) Volume V of a parallelopiped with length l, width w and height h.
 (p) Volume V of a right circular cylinder with radius r and height h.
 (q) Volume V of a general cone with base area A and height h.
 (r) Volume V of a right circular cone with radius r and height h.
 (s) Volume V of a pyramid with height h and a square base of side s.
2. Make a labeled drawing and give a formula for the area A of a sector of a circle of radius r and central angle θ.

3. Two boats nearly collide on a lake—one heading due north at 20 mph and the other east at 25 mph. Make a labeled drawing and give a formula in terms of time t in hours for the distance d in miles between the boats.

4. Make a labeled drawing and give a formula in terms of height alone for the surface area of an unopened 1000 cm^3 can of soup.
5. Use Dimensional Analysis to determine which of the formulas could be correct. \(V \) is a volume, \(A \) is an area, \(x, y, \) and \(z \) are lengths, \(v \) is a velocity (dimensions \(L/T \)), \(a \) is an acceleration (dimensions \(L/T^2 \)), and \(t \) is a time. The other quantities are dimensionless.

(a) \[A = \frac{xy^2 + 2z^3}{x + y + z} \]

(b) \[t = \frac{\pi A}{xv} \]

(c) \[V = \frac{v^3}{3a} \]

(d) \[x = vt + at^2 \]

(e) \[y = vat^3 \]

6. Suppose the displacement \(s \) of a particle is related to time \(t \) according to the equation \(s = ct^4 - d/t \). What are the dimensions of the constants \(c \) and \(d \)?

7. Suppose that two quantities \(A \) and \(B \) have different dimensions. Which of the following arithmetic operations could be physically meaningful? Explain.

(a) \(A+B \)

(b) \(A/B \)

(c) \(B-A \)

(d) \(AB \)