CHAPTER 2
THE TRANSFORMATION

2.1. Definitions

For the remainder of this thesis, we assume that

\[\psi \text{ is an MDF with monic } \text{OPS } \{P_n(x)\}_{n=0}^{\infty} \]

and that

\[\lambda \text{ and } \gamma \text{ are fixed positive real numbers.} \]

Our development will be facilitated by a series of definitions: We set

\[v(x) := \frac{1}{\lambda} \left(x - \frac{\gamma}{x} \right), \]

\[v^{-1}_\pm(y) := \frac{\lambda}{2} \left(y \pm \sqrt{y^2 + \frac{4\gamma}{\lambda^2}} \right), \]

\[\tilde{\psi}(x) := \begin{cases} \int_{-\infty}^{x} \frac{1}{v'(t)} d((\psi \circ v)(t)), & \text{for } x \in \mathbb{R}^- \\ \int_{0}^{x} \frac{1}{v'(t)} d((\psi \circ v)(t)), & \text{for } x \in \mathbb{R}^+ \end{cases}, \]

and, for \(n = 0, 1, 2, \ldots, \)

\[\tilde{P}_{2n}(x) := \lambda^n P_n(v(x)) \text{ and } \tilde{P}_{2n+1}(x) := \left(-\frac{\lambda}{\gamma} \right)^n \frac{1}{x} P_n(v(x)). \]
2.2. Preliminary Theorems

We present here a progression of theorems, parts of which taken together constitute our main result, the Transformation Theorem, studied in the next section.

We begin with an exploration of v, the essential component of our transformation, and the related functions v^{-1}_-, v^{-1}_+, and v'.

Theorem 2.2.1.

(A) $v|_{\mathbb{R}^-}$, $v|_{\mathbb{R}^+}$, v^{-1}_-, and v^{-1}_+ are differentiable, monotone increasing functions.

(B) $v|_{\mathbb{R}^+}$ is a diffeomorphism from \mathbb{R}^+ to \mathbb{R}. Its inverse is v^{-1}_+.

(C) $v|_{\mathbb{R}^-}$ is a diffeomorphism from \mathbb{R}^- to \mathbb{R}. Its inverse is v^{-1}_-.

(D) For all $x \in \mathbb{R}^- \cup \mathbb{R}^+$, $v(-\frac{\gamma}{x}) = v(x)$.

(E) For all $t \in \mathbb{R}^- \cup \mathbb{R}^+$, $\frac{dv}{dx}|_{x=-\frac{\gamma}{t}} = \frac{t^2}{\gamma} \frac{dv}{dx}|_{x=t}$.

Proof: (A) Evidently, v has domain $\mathbb{R}^- \cup \mathbb{R}^+$, and $\frac{dv}{dx} = \frac{1}{x}(1 + \frac{\gamma}{x^2}) > \frac{1}{x} > 0$; that is, v is differentiable and monotone increasing on \mathbb{R}^- and on \mathbb{R}^+. Similarly, it is clear that the domain of v^{-1}_\pm is \mathbb{R}, and, since

$$\left| \frac{y}{\sqrt{y^2 + \frac{4\gamma}{x^2}}} \right| < 1,$$
we have

\[
\frac{d v^{-1}_\pm}{dy} = \frac{\lambda}{2} \left(1 \pm \frac{y}{\sqrt{y^2 + \frac{4\gamma}{\lambda^2}}}
ight) > 0;
\]

that is, \(v^{-1}_\pm \) is differentiable and monotone increasing. A graph of \(v, v^{-1}_-, \) and \(v^{-1}_+ \) is shown in Figure 1.

\[
y
y = v(x) \quad y = v^{-1}_+(x)
\]

\[
\sqrt{\gamma}
\]

\[
\sqrt{\gamma}
\]

\[
x
0
\]

\[
y = \frac{1}{\lambda} x \\
(asymptote)
\]

\[
y = v^{-1}_-(x) \quad y = v(x)
\]

\textit{Figure 1.} Illustration of basic features of \(v, v^{-1}_- \) and \(v^{-1}_+ \)

for typical values of \(\lambda \) and \(\gamma \).

(B) By inspection of the definitions, \(v|_{\mathbb{R}^+} \) maps \(\mathbb{R}^+ \) onto \(\mathbb{R} \), and \(v^{-1}_+ \) maps \(\mathbb{R} \) onto \(\mathbb{R}^+ \). By Theorem 2.2.1 (A), \(v|_{\mathbb{R}^+} \) and \(v^{-1}_+ \) are injective and differentiable. Hence, it suffices to show that \(v^{-1}_+(v(x)) = x \), for any \(x \) in
Theorem 2.2.1 (B).

(D) \(v(x) := \frac{1}{\lambda}(x - \gamma) = \frac{1}{\lambda}(\gamma - \gamma/(\gamma x)) = v(-\frac{\gamma}{x}) \), for any non-zero \(x \) in \(\mathbb{R} \).

(E) \(\frac{dv}{dx}\big|_{x=-\frac{\gamma}{t}} = \frac{1}{\lambda}(1 + \frac{\gamma^2}{x^2})|_{x=-\frac{\gamma}{t}} = \frac{1}{\lambda}(1 + \frac{t^2}{\gamma}) = \frac{t^2}{\gamma} \frac{dv}{dx}\big|_{x=t} \), for any non-zero \(t \) in \(\mathbb{R} \). □

Theorem 2.2.2.

(A) \(\tilde{\psi} \) is a bounded function on \(\mathbb{R}^- \cup \mathbb{R}^+ \).

(B) \(\tilde{\psi} \) is non-decreasing on \(\mathbb{R}^- \) and \(\mathbb{R}^+ \) separately.

Proof: (A) Inspection of the definitions shows that \(0 < \frac{1}{v(t)} < \lambda \), for all non-zero \(t \) in \(\mathbb{R} \). Hence, by comparison, for \(x \) in \(\mathbb{R}^- \),
\[0 \leq \int_{-\infty}^{v(x)} \frac{1}{v'(v^{-1}(y))} \, d\psi(y) \leq \int_{-\infty}^{\infty} \lambda \, d\psi(y) = \lambda \mu_0(\psi).\]

But, for \(x\) in \(\mathbb{R}^-\), with \(y = v(t)\),

\[
\tilde{\psi}(x) := \int_{-\infty}^{x} \frac{1}{v'(t)} \, d(\psi \circ v)(t) = \int_{-\infty}^{v(x)} \frac{1}{v'(v^{-1}(y))} \, d\psi(y).
\]

Hence, \(0 \leq \tilde{\psi}(x) \leq \lambda \mu_0(\psi)\), for \(x\) in \(\mathbb{R}^-\); that is, \(\tilde{\psi}\) is a bounded map from \(\mathbb{R}^-\) to \(\mathbb{R}\). By a similar argument, one can show that \(\tilde{\psi}\) is a bounded map from \(\mathbb{R}^+\) to \(\mathbb{R}\).

(B) To verify that \(\tilde{\psi}\) is non-decreasing on \(\mathbb{R}^-\), suppose \(-\infty < x < y < 0\). For all \(t \leq y\), \(\frac{1}{v'(t)} \geq \frac{1}{v'(y)}\). Hence,

\[
\tilde{\psi}(y) - \tilde{\psi}(x) = \int_{x}^{y} \frac{1}{v'(t)} \, d(\psi \circ v)(t) \\
\geq \frac{1}{v'(y)} \int_{x}^{y} d(\psi \circ v)(t) \\
= \frac{\psi(v(y)) - \psi(v(x))}{v'(y)}.
\]

But, \(v'(y) = \frac{1}{\chi}(1 + \frac{\gamma}{y^2}) > 0\), and \(\psi(v(y)) - \psi(v(x)) \geq 0\) by the monotonicity of \(\psi\) and \(v\). Thus, \(\tilde{\psi}(y) - \tilde{\psi}(x) \geq 0\); that is, \(\tilde{\psi}\) is non-decreasing on \(\mathbb{R}^-\). Likewise, it can be shown that \(\tilde{\psi}\) is non-decreasing on \(\mathbb{R}^+\). \(\square\)

Theorem 2.2.3. \(\sigma(\tilde{\psi}) = v_-^{-1}(\sigma(\psi)) \cup v_+^{-1}(\sigma(\psi))\).

Proof: Suppose \(x \in v_-^{-1}(\sigma(\psi))\). Then \(x \in \mathbb{R}^-\), and \(v(x) \in v(v_-^{-1}(\sigma(\psi)))\)
= \sigma(\psi). Therefore, there is an \(\epsilon > 0 \) such that \((x - \epsilon, x + \epsilon) \subset \mathbb{R}^-\), and \(\psi(v(x) + \delta) - \psi(v(x) - \delta) > 0 \) for all \(\delta > 0 \). Let \(\delta_1 \) satisfy \(0 < \delta_1 < \epsilon \). We have \(v(x - \delta_1) < v(x) < v(x + \delta_1) \) by Theorem 2.2.1 (A). Hence, there exists a \(\delta_2 > 0 \) such that \(v(x - \delta_1) < v(x) - \delta_2 < v(x) + \delta_2 < v(x + \delta_1) \), and the estimates

\[
\tilde{\psi}(x + \delta_1) - \tilde{\psi}(x - \delta_1) = \int_{v(x - \delta_1)}^{v(x + \delta_1)} \frac{1}{v'(\tilde{\psi}^{-1}(y))} d\tilde{\psi}(y)
\geq \frac{1}{v'(x + \delta_1)} \int_{v(x - \delta_1)}^{v(x + \delta_1)} d\tilde{\psi}(y)
= \frac{1}{v'(x + \delta_1)} (\psi(v(x + \delta_1)) - \psi(v(x - \delta_1)))
\geq \frac{1}{v'(x + \delta_1)} (\psi(v(x + \delta_2) - \psi(v(x) - \delta_2))
\]

hold. But \(\frac{1}{v'(x + \delta_1)} > 0 \), and, since \(v(x) \) is in \(\sigma(\psi) \), \(\psi(v(x) + \delta_2) - \psi(v(x) - \delta_2) > 0 \). Thus, \(\tilde{\psi}(x + \delta_1) - \tilde{\psi}(x - \delta_1) > 0 \). It follows that \(v_{-1}^{-1}(\sigma(\psi)) \subset \sigma(\tilde{\psi}) \). By a similar argument, one can show that \(v_{+1}^{-1}(\sigma(\psi)) \subset \sigma(\tilde{\psi}) \). Thus, \((v_{-1}^{-1}(\sigma(\psi)) \cup v_{+1}^{-1}(\sigma(\psi))) \subset \sigma(\tilde{\psi}) \).

Next, suppose \(x \in (\sigma(\tilde{\psi}) \cap \mathbb{R}^-) \). By Theorem 2.2.1 (C), there is a unique \(y \) in \(\mathbb{R} \) such that \(v_{-1}^{-1}(y) = x \). But estimates similar to those above show that \(y \in \sigma(\psi) \). Thus, \(x \in v_{-1}^{-1}(\sigma(\psi)) \) if \(x \in (\sigma(\tilde{\psi}) \cap \mathbb{R}^-) \), and hence \((\sigma(\tilde{\psi}) \cap \mathbb{R}^-) \subset v_{-1}^{-1}(\sigma(\psi)) \). In an analogous manner, it can be shown that \((\sigma(\tilde{\psi}) \cap \mathbb{R}^+) \subset v_{+1}^{-1}(\sigma(\psi)) \). It follows that \(\sigma(\tilde{\psi}) = (\sigma(\tilde{\psi}) \cap \mathbb{R}^-) \cup (\sigma(\tilde{\psi}) \cap \mathbb{R}^+) \subset (v_{-1}^{-1}(\sigma(\psi)) \cup v_{+1}^{-1}(\sigma(\psi))) \). \(\square \)

Theorem 2.2.4. Let \(n \) be any integer. Then:
(A) $\int_{-\infty}^{0} x^n \frac{1}{v(x)} d(\psi \circ v)(x)$ and $\int_{0}^{\infty} x^n \frac{1}{v(x)} d(\psi \circ v)(x)$ exist.

(B) $\int_{-\infty}^{0} x^n \frac{1}{v(x)} d(\psi \circ v)(x) = (-1)^n \gamma^{n+1} \int_{0}^{\infty} x^{-n-2} \frac{1}{v'(x)} d(\psi \circ v)(x)$.

(C) $\int_{0}^{\infty} x^n d\tilde{\psi}(x) = \int_{0}^{\infty} x^n \frac{1}{v'(x)} d(\psi \circ v)(x)$ and $\int_{-\infty}^{0} x^n d\tilde{\psi}(x)$ exist.

(D) $\int_{0}^{\infty} x^n d\tilde{\psi}(x)$ and $\int_{0}^{\infty} x^n d\tilde{\psi}(x)$ exist.

(E) $\int_{0}^{\infty} x^n d\tilde{\psi}(x) = (-1)^n \gamma^{n+1} \int_{0}^{\infty} x^{-n-2} d\tilde{\psi}(x)$.

Proof: (A) Since $0 < \frac{1}{v'(x)} < \lambda$, and, for all $x \in \mathbb{R}^-$, we have $0 < \frac{1}{v'(x)}$, we can deduce that the integrals $\int_{-\infty}^{0} x^n \frac{1}{v'(x)} d(\psi \circ v)(x)$ are finite by comparing $|t|^n$ to $t^N + 1$, for N an even integer greater than n. Hence, for $n \in \mathbb{Z}_0^+$, the integrals $\int_{0}^{\infty} x^n \frac{1}{v'(x)} d(\psi \circ v)(x)$ exist, by comparison. A similar argument shows that the integrals $\int_{0}^{\infty} x^n \frac{1}{v'(x)} d(\psi \circ v)(x)$, for $n \in \mathbb{Z}_0^+$, exist.

The substitution $x \rightarrow -\frac{\gamma}{x}$ in $\int_{-\infty}^{0} x^n \frac{1}{v'(x)} d(\psi \circ v)(x)$ yields, by Theorem...
2.2.1, parts (D) and (E),

\[
\int_{-\infty}^{0} x^n \frac{1}{v'(x)} d(\psi \circ v)(x) = (-1)^n \gamma^{n+1} \int_{0}^{\infty} x^{-n-2} \frac{1}{v'(x)} d(\psi \circ v)(x).
\]

Hence, the integrals \(\int_{-\infty}^{0} x^n \frac{1}{v'(x)} d(\psi \circ v)(x) \) and \(\int_{0}^{\infty} x^n \frac{1}{v'(x)} d(\psi \circ v)(x) \) exist for all integers \(n \), with the possible exception of the case \(n = -1 \). A comparison of \(|x|^{-1} \) to \(x^{-2} + 1 \) now shows that the integrals exist also for \(n = -1 \).

(B) By Theorem 2.2.4 (A), the integral \(\int_{-\infty}^{0} x^n \frac{1}{v'(x)} d(\psi \circ v)(x) \) exists for any integer \(n \). As in the proof of Theorem 2.2.4 (A), the substitution \(x \to -\frac{\gamma}{x} \) now yields

\[
\int_{-\infty}^{0} x^n \frac{1}{v'(x)} d(\psi \circ v)(x) = (-1)^n \gamma^{n+1} \int_{0}^{\infty} x^{-n-2} \frac{1}{v'(x)} d(\psi \circ v)(x),
\]

for any integer \(n \).

(C, D) Let \(n \) be an integer, and suppose \(-\infty < a < b < 0 \). Then, since the integrands are continuous and the integrators are non-decreasing and bounded on the closed interval \([a, b] \), the integrals

\[
\int_{a}^{b} x^n d\widetilde{\psi}(x) \quad \text{and} \quad \int_{a}^{b} x^n \frac{1}{v'(x)} d(\psi \circ v)(x) \quad \text{exist for all} \quad n \in \mathbb{Z}.
\]

Next, set \(x_{m,k} := k \frac{b-a}{m} + a \) for \(m \geq 1 \) and \(k = 0, 1, 2, ..., m \). By the Mean Value Theorem, there is a \(c_{m,k} \) in the closed interval \([x_{m,k-1}, x_{m,k}] \) such that

\[
\int_{x_{m,k-1}}^{x_{m,k}} \frac{1}{v'(x)} d(\psi \circ v)(x) = \frac{1}{v'(c_{m,k})} (\psi(v(x_{m,k})) - \psi(v(x_{m,k-1}))).
\]
for each \(k = 1, 2, \ldots, m \). Since the integrals exist, we can choose to take

\[
\int_a^b x^n d\tilde{\psi}(x) = \lim_{m \to \infty} \sum_{k=1}^m c_{m,k}^n (\tilde{\psi}(x_{m,k}) - \tilde{\psi}(x_{m,k-1}))
\]

and

\[
\int_a^b x^n \frac{1}{v'(x)} d(\psi \circ v)(x) = \lim_{m \to \infty} \sum_{k=1}^m c_{m,k}^n \frac{1}{v'(c_{m,k})} (\psi(v(x_{m,k})) - \psi(v(x_{m,k-1}))).
\]

The definition of \(\tilde{\psi} \) and additivity of the integral imply

\[
\tilde{\psi}(x_{m,k}) - \tilde{\psi}(x_{m,k-1}) = \int_{x_{m,k-1}}^{x_{m,k}} \frac{1}{v'(x)} d(\psi \circ v)(x).
\]

It follows that

\[
\int_a^b x^n d\tilde{\psi}(x) = \lim_{m \to \infty} \sum_{k=1}^m c_{m,k}^n \frac{1}{v'(c_{m,k})} (\psi(v(x_{m,k})) - \psi(v(x_{m,k-1})))
\]

\[
= \int_a^b x^n \frac{1}{v'(x)} d(\psi \circ v)(x).
\]

Since \(\int_{-\infty}^0 x^n \frac{1}{v'(x)} d(\psi \circ v)(x) \) exists by Theorem 2.2.4 (A), we then have \(\int_{-\infty}^0 x^n d\tilde{\psi}(x) \) exists and equals \(\int_{-\infty}^0 x^n \frac{1}{v'(x)} d(\psi \circ v)(x) \).

Likewise, it follows that \(\int_{0}^{\infty} x^n d\tilde{\psi}(x) \) exists and is equal to the integral \(\int_{0}^{\infty} x^n \frac{1}{v'(x)} d(\psi \circ v)(x) \).

(E) The result follows by substitution of the integrals in Theorem 2.2.4 (C) in the equation of Theorem 2.2.4 (B). \(\square \)

Theorem 2.2.5. Let \(n \) be any integer. Then:

(A) \(\mu_n(\tilde{\psi}) \) exists.
(B) $\mu_n(\tilde{\psi}) = (-1)^n \gamma^{n+1} \mu_{-n-2}(\tilde{\psi})$.

(C) $\mu_{-1}(\tilde{\psi}) = 0$.

Proof: (A) Since $\mu_n(\tilde{\psi}) := \int_{-\infty}^{0} x^n d\tilde{\psi}(x) + \int_{0}^{\infty} x^n d\tilde{\psi}(x)$, Theorem 2.2.4 (D) implies $\mu_n(\tilde{\psi})$ exists for every integer n.

(B) The result follows immediately by applying Theorem 2.2.4 (E) to the definition $\mu_n(\tilde{\psi}) := \int_{-\infty}^{0} x^n d\tilde{\psi}(x) + \int_{0}^{\infty} x^n d\tilde{\psi}(x)$.

(C) By Theorem 2.2.5 (A), $\mu_{-1}(\tilde{\psi})$ exists, and, by Theorem 2.2.5 (B) with $n = -1$, $\mu_{-1}(\tilde{\psi}) = -\mu_{-1}(\tilde{\psi})$. Hence, $\mu_{-1}(\tilde{\psi}) = 0$. □

Theorem 2.2.6. $\tilde{\psi}$ is a SMDF.

Proof: By Theorem 2.2.2, $\tilde{\psi}$ is a bounded function, non-decreasing on \mathbb{R}^- and \mathbb{R}^+ separately. By Theorem 2.2.1 (C), v^{-1}_- and v^{-1}_+ are one-to-one, and Theorem 2.2.3 yields $\sigma(\tilde{\psi}) = v^{-1}_-(\sigma(\psi)) \cup v^{-1}_+(\sigma(\psi))$. Hence, $\sigma(\tilde{\psi})$ is infinite since $\sigma(\psi)$ is infinite, ψ being a MDF. Lastly, the moment $\mu_n(\tilde{\psi})$, for each integer n, exists by Theorem 2.2.5 (A). □

Theorem 2.2.7. Let R and S be Laurent polynomials. Then the inner-product $(R, S)_{\tilde{\psi}} = \int_{-\infty}^{0} R(x)S(x) \frac{1}{v'(x)} d(\psi \circ v)(x) + \int_{0}^{\infty} R(x)S(x) \frac{1}{v'(x)} d(\psi \circ v)(x)$.

Proof: By Theorem 2.2.6, $\tilde{\psi}$ is a SMDF. Hence,

$$(R, S)_{\tilde{\psi}} = \int_{-\infty}^{0} R(x)S(x) d\tilde{\psi}(x) + \int_{0}^{\infty} R(x)S(x) d\tilde{\psi}(x).$$
Thus, the result follows from Theorem 2.2.4 (C) and linearity of the integral.

\[\square \]

Theorem 2.2.8. Let \(j \) and \(k \) be non-negative integers. Then:

(A) \((\tilde{P}_{2j}, \tilde{P}_{2k})_\psi = \lambda^{j+k+1}(P_j, P_k)_\psi \).

(B) \((\tilde{P}_{2j+1}, \tilde{P}_{2k+1})_\psi = \left(\frac{\alpha}{\gamma} \right)^{j+k+1} (P_j, P_k)_\psi \).

(C) \((\tilde{P}_{2j+1}, \tilde{P}_{2k})_\psi = 0 \).

Proof: (A) The definition of \((\tilde{P}_{2j}, \tilde{P}_{2k})_\psi\), Theorem 2.2.7, the substitution \(x = -\frac{\gamma}{t}\), Theorem 2.2.1 (E), linearity of the integral, the definition of \(\tilde{P}_{2j}(x)\) and \(\tilde{P}_{2k}(x)\), the substitution \(y = v(x)\), and the definition of \((P_j, P_k)_\psi\) justify

\[
(\tilde{P}_{2j}, \tilde{P}_{2k})_\psi := \int_{-\infty}^{0} \tilde{P}_{2j}(x)\tilde{P}_{2k}(x) d\tilde{\psi}(x) + \int_{0}^{\infty} \tilde{P}_{2j}(x)\tilde{P}_{2k}(x) d\tilde{\psi}(x)
\]

\[
= \int_{-\infty}^{0} \tilde{P}_{2j}(x)\tilde{P}_{2k}(x) \frac{1}{v'(x)} d(\psi \circ v)(x) + \int_{0}^{\infty} \tilde{P}_{2j}(x)\tilde{P}_{2k}(x) \frac{1}{v'(x)} d(\psi \circ v)(x)
\]

\[
= \int_{0}^{\infty} \tilde{P}_{2j}(t)\tilde{P}_{2k}(t) \frac{\gamma}{t^2} \frac{1}{v'(t)} d(\psi \circ v)(t) + \int_{0}^{\infty} \tilde{P}_{2j}(x)\tilde{P}_{2k}(x) \frac{1}{v'(x)} d(\psi \circ v)(x)
\]

\[
= \lambda \int_{0}^{\infty} \tilde{P}_{2j}(x)\tilde{P}_{2k}(x) \frac{1}{\lambda(1 + \frac{\gamma}{x^2})} \frac{1}{v'(x)} d(\psi \circ v)(x)
\]

\[
= \lambda \int_{0}^{\infty} \tilde{P}_{2j}(x)\tilde{P}_{2k}(x) d(\psi \circ v)(x)
\]

\[
= \chi^{j+k+1} \int_{0}^{\infty} P_j(v(x))P_k(v(x)) d(\psi \circ v)(x)
\]

\[
= \chi^{j+k+1} \int_{-\infty}^{\infty} P_j(y)P_k(y) d\psi(y)
\]

\[
= \chi^{j+k+1}(P_j, P_k)_\psi.
\]
(B) By similar means as used in the proof of part (A),

\[
\begin{aligned}
\langle \tilde{P}_{2j+1}, \tilde{P}_{2k+1} \rangle_{\tilde{\psi}} := & \int_{-\infty}^{0} \tilde{P}_{2j+1}(x) \tilde{P}_{2k+1}(x) \, d\tilde{\psi}(x) + \\
& \int_{0}^{\infty} \tilde{P}_{2j+1}(x) \tilde{P}_{2k+1}(x) \, d\tilde{\psi}(x) \\
= & \left(-\frac{1}{\gamma} \right)^{j+k} \left(\int_{-\infty}^{0} \tilde{P}_{2j}(x) \tilde{P}_{2k}(x) \frac{1}{x^2} \, d\tilde{\psi}(x) + \\
& \int_{0}^{\infty} \tilde{P}_{2j}(x) \tilde{P}_{2k}(x) \frac{1}{x^2} \, d\tilde{\psi}(x) \right) \\
= & \left(-\frac{1}{\gamma} \right)^{j+k} \left(\int_{0}^{\infty} \tilde{P}_{2j}(t) \tilde{P}_{2k}(t) \frac{1}{x^2} \, d(\psi \circ v)(x) + \\
& \int_{0}^{\infty} \tilde{P}_{2j}(t) \tilde{P}_{2k}(t) \frac{1}{x^2} \, d(\psi \circ v)(x) \right) \\
= & \left(-\frac{1}{\gamma} \right)^{j+k} \frac{\lambda}{\gamma} \int_{0}^{\infty} \tilde{P}_{2j}(x) \tilde{P}_{2k}(x) \, d(\psi \circ v)(x) \\
= & \left(-\frac{1}{\gamma} \right)^{j+k} \frac{\lambda^{j+k+1}}{\gamma} \int_{-\infty}^{\infty} P_j(y) P_k(y) \, \psi(y) \\
= & \left(-1 \right)^{j+k} \left(\frac{\lambda}{\gamma} \right)^{j+k+1} (P_j, P_k)_{\psi}.
\end{aligned}
\]

If \(j \neq k \), then \((P_j, P_k)_{\psi} = 0 \) by orthogonality. If \(j = k \), then \((P_j, P_k)_{\psi} = 1 \).

In either case,

\[
\left(-1 \right)^{j+k} \left(\frac{\lambda}{\gamma} \right)^{j+k+1} (P_j, P_k)_{\psi} = \left(\frac{\lambda}{\gamma} \right)^{j+k+1} (P_j, P_k)_{\psi}.
\]

The result therefore follows.

(C) By arguments similar to those used in the proofs of the previous two
parts of Theorem 2.2.8,

\[
(\tilde{P}_{2j+1}, \tilde{P}_k)_{\tilde{\psi}} := \int_{-\infty}^{0} \tilde{P}_{2j+1}(x) \tilde{P}_k(x) \frac{1}{v'(x)} d(\psi \circ v)(x) + \int_{0}^{\infty} \tilde{P}_{2j+1}(x) \tilde{P}_k(x) d\tilde{\psi}(x)
\]

\[
= \int_{-\infty}^{0} \tilde{P}_{2j+1}(x) \tilde{P}_k(x) \frac{1}{v'(x)} d(\psi \circ v)(x) + \int_{0}^{\infty} \tilde{P}_{2j+1}(x) \tilde{P}_k(x) \frac{1}{v'(x)} d(\psi \circ v)(x)
\]

\[
= -\int_{0}^{\infty} \tilde{P}_{2j+1}(t) \tilde{P}_k(t) \frac{1}{v'(t)} d(\psi \circ v)(t) - \int_{-\infty}^{0} \tilde{P}_{2j+1}(t) \tilde{P}_k(t) \frac{1}{v'(t)} d(\psi \circ v)(t)
\]

\[
= -\int_{-\infty}^{0} \tilde{P}_{2j+1}(x) \tilde{P}_k(x) d\tilde{\psi}(x) - \int_{0}^{\infty} \tilde{P}_{2j+1}(x) \tilde{P}_k(x) d\tilde{\psi}(x)
\]

\[
= -(\tilde{P}_{2j+1}, \tilde{P}_k)_{\tilde{\psi}}.
\]

Then, \((\tilde{P}_{2j+1}, \tilde{P}_k)_{\tilde{\psi}} = 0\), since \((\tilde{P}_{2j+1}, \tilde{P}_k)_{\tilde{\psi}}\) is finite by Theorem 2.2.6. □

Theorem 2.2.9. \{\(\tilde{P}_n(x)\)\}_{n=0}^{\infty} is the monic OLPS with respect to \(\tilde{\psi}\).

Proof: Inspection of the definition of \(\tilde{P}_n(x)\) shows that it is a monic L-polynomial of L-degree \(n\), and Theorem 2.2.8 implies orthogonality of \{\(\tilde{P}_n(x)\)\} \(_{n=0}^{\infty}\) with respect to \(\tilde{\psi}\). □

2.3. The Transformation Theorem

For ease of reference and discussion we collect several of the results obtained in the previous section into the following theorem.
Theorem 2.3.1. (The Transformation Theorem) Let \(\psi \) be a moment distribution function, let \(\sigma(\psi) \) denote the spectrum of \(\psi \), and let \(\{P_n(x)\}_{n=0}^{\infty} \) denote the monic orthogonal polynomial sequence with respect to \(\psi \). Let \(\lambda, \gamma \in \mathbb{R}^+ \), and set

\[
v(x) := \frac{1}{x}(x - \frac{\gamma}{x}) \quad \text{and} \quad v^{-1}(y) := \frac{\lambda}{2}(y \pm \sqrt{y^2 + \frac{4\gamma}{\lambda^2}}).
\]

Then:

(A) \(\tilde{\psi}(x) := \int_{-\infty}^{x} \frac{1}{v(t)} d(\psi \circ v)(t), \ x \in \mathbb{R}^- \) is a strong moment distribution function.

(B) \(\sigma(\tilde{\psi}) = v^{-1}(\sigma(\psi)) \cup v^{-1}(\sigma(\psi)) \) is the spectrum of \(\tilde{\psi} \).

(C) \(\{\tilde{P}_m(x)\}_{m=0}^{\infty} \) is the monic orthogonal Laurent polynomial sequence with respect to \(\tilde{\psi} \), where

\[
\tilde{P}_{2n}(x) := \lambda^n P_n(v(x)) \quad \text{and} \quad \tilde{P}_{2n+1}(x) := \left(-\frac{\lambda}{\gamma} \right)^n \frac{1}{x} P_n(v(x))
\]

for \(n = 0, 1, 2, \ldots \).

Proof: See the proofs of Theorem 2.2.3, Theorem 2.2.6 and Theorem 2.2.9 \(\square \)

We call \(v \) the **doubling transformation** because it is a monotone increasing function of both \(\mathbb{R}^- \) and \(\mathbb{R}^+ \) onto \(\mathbb{R} \). In effect, \((f \circ v)|_{\mathbb{R}^-} \) and \((f \circ v)|_{\mathbb{R}^+} \) are copies of \(f : \mathbb{R} \to \mathbb{R} \) living on the negative reals and the positive reals, respectively. In this sense, \(f \circ v \) is a doubling of \(f \). See Figure 2 for an example.
Figure 2. Graph of the monic Legendre polynomial $P_3(x) = x^3 - \frac{3}{5}x$ and $\tilde{P}_6(x) = \lambda^3 P_3(v(x))$ with $\lambda = \gamma = 1$.

Of course, v is not the only monotone increasing function of both \mathbb{R}^- and \mathbb{R}^+ onto \mathbb{R}; that is, v is not the only doubling transformation. However, $v(x) = \frac{1}{\lambda}(x - \frac{2}{x})$ is a Laurent polynomial. This feature, along with those given in Theorem 2.2.1, make v especially useful for the purpose of transforming systems of OPS’s into systems of OLPS’s. Inspection of the Transformation Theorem shows that the L-polynomial \tilde{P}_{2n} is a doubling of the polynomial P_n, and, in a slightly looser sense, $\bar{\psi}$ with spectrum $\sigma(\bar{\psi}) = v^{-1}(\sigma(\psi)) \cup v^{-1}_+(\sigma(\psi))$ is a doubling of ψ with spectrum $\sigma(\psi)$.

The doubling of the spectrum in particular can be used to discuss to
what extent $\tilde{\psi}$ is an extension of ψ. For example, if $\sigma(\psi)$ is a symmetric set about the origin, it can be seen by Theorem 2.3.1 (B) and the definitions of v_{-}^{-1} and v_{+}^{-1} that $\sigma(\tilde{\psi})$ is symmetric about the origin. When $\sigma(\psi)$ is a symmetric interval about the origin, $\sigma(\tilde{\psi})$ is the union of two disjoint intervals forming a set symmetric about the origin. In particular, if $\sigma(\psi) = \mathbb{R}$, then $\sigma(\tilde{\psi}) = \mathbb{R}^{-} \cup \mathbb{R}^{+}$. If $\sigma(\psi) \subseteq \mathbb{R}_{0}^{+} = [0, \infty)$, we would like an extension of ψ to a SMDF to have its spectrum contained in \mathbb{R}^{+}. However, a direct application of the Transformation Theorem to a MDF ψ having spectrum $\sigma(\psi) \subseteq \mathbb{R}_{0}^{+}$ yields the SMDF $\tilde{\psi}$ with its doubled spectrum $\sigma(\tilde{\psi}) = v_{-}^{-1}(\sigma(\psi)) \cup v_{+}^{-1}(\sigma(\psi))$ half contained in \mathbb{R}^{-}. Similarly, if $\sigma(\psi) \subseteq \mathbb{R}_{0}^{-} = (-\infty, 0]$, then $\sigma(\tilde{\psi})$ is half contained in \mathbb{R}^{+}.

In a further effort to discover to what extent the transformed objects given by the Transformation Theorem are extensions of the corresponding original objects, it is worth examining the limiting case of $\lambda = 1$ and $\gamma = 0$. In this situation, it can be seen by inspection of the definitions that $v(x) = x$ and $v_{\pm}^{-1}(x) = xI_{\mathbb{R}_{\pm}}(x)$, where $I_{A}(x)$ is the indicator function for a set A. Hence, in this limiting case, we see that $\tilde{P}_{2n}(x) = P_{n}(x)$, $v_{\pm}^{-1}(\sigma(\psi)) = \sigma(\psi) \cap \mathbb{R}_{0}^{\pm}$ and $\sigma(\tilde{\psi}) = \sigma(\psi)$. Further, as we will show in the next chapter, $\tilde{\psi}(x)$ and $\psi(x)$ are essentially equal in this limiting case, with $\mu_{n}(\tilde{\psi}) = \mu_{n}(\psi)$ for all non-negative integers n.