CONSTRUCTIONS AND CLASSIFICATIONS
Part 4: Periodicity

If \(f(x) = f(x + p) \) for some constant \(p \) and all \(x \) in the domain, the function \(f(x) \) is said to be periodic with period \(p \). One way to describe periodic functions by their graphs is by “cutting and pasting”: “cut” any vertical strip of width \(p \), and the entire graph is reproduced by “pasting” copies of the “cut” together side by side. In other words, the graph of a periodic function repeats itself; mathematically, \(f(x) = f(x + np) \) for all integers \(n \).

1. Below is the graph of a periodic function. What is the smallest period? Explain.

2. (a) Give an example of a line in the Cartesian plane that is the graph of a periodic function.

 (b) What is the smallest period? Explain.

 (c) Which lines represent periodic functions? Explain.
3. (a) Graph \(f(x) = x^2 \) below. (b) Is \(f(x) = x^2 \) periodic? Explain.

4. If we are careful, we can construct a periodic function of period \(p \) from any function by “cutting” a vertical strip of the graph of width \(p \) and “pasting” copies of the strip side by side.

(a) Try this with \(f(x) = x^2 \), using the strip \(1/2 < x \leq 1 \).

(b) Try this with \(f(x) = x^2 \), using the strip \(1/2 \leq x < 1 \).

(c) Explain why at least one of the endpoints of the interval for \(x \) must be omitted.